
64 The Delphi Magazine Issue 69

Back To Basics:
A Reintroduction
To Properties, Part 2
by Dave Jewell

In last month’s property primer,
we looked at the fundamentals of

properties, with a particular
emphasis on how they provide a
sort of syntactic shorthand, allow
you to do work behind the scenes
whenever a property is read or
written to and, most importantly,
provide an elegant mechanism to
decouple the interface of an object
from its internal implementation.
This month, we’re going to delve
deeper, covering issues such as
Object Inspector compatibility,
read-only components, the
innards of RTTI, and default prop-
erties. We’ll also be taking a peek at
how properties are implemented
in the .NET camp.

Properties Meet
The Object Inspector
In order for a property to appear in
the Object Inspector, it needs to be
declared in the published section of
the containing class. When the
compiler sees that a property is
published, it emits a special chunk
of data called RTTI, or Run-Time
Type Information. This RTTI fully
describes the property: it includes
such information as the type and
name of the property, the maxi-
mum and minimum values allowed
for the property (as in a scalar
type, for example), whether the
property has a default value, and
what that value might be, etc. The
technically curious and anoraks
amongst us (those like me, who
prefer to see the bits and bytes!)
might want to take a look at the
boxout entitled RTTI, Under The
Hood to see how this stuff works.

If you’ve been getting to grips
with Microsoft’s .NET initiative,
you will have seen all sorts of new
buzzwords bandied around such
as ‘assembly’, ‘metadata’ and so

forth. From a Delphi perspective,
there’s absolutely nothing to be
afraid of here: the language may
have changed (pun strictly inten-
tional) but the concepts certainly
haven’t. In the .NET scheme of
things, metadata corresponds
directly to Borland’s RTTI informa-
tion, although it’s more than this,
as we shall see. An assembly, on
the other hand, is a specialised DLL
which can contain one or more
classes and/or components. Yes,
you’ve guessed it, an assembly is
equivalent to a Delphi package! I’m
not trying to downplay the signifi-
cance of .NET here, or pour scorn
on the innovative features of the
product. I think .NET is going to be
extremely important in the next
few years, and it’s great to know
that Borland are hard at work
creating .NET-compatible versions
of Delphi and C++Builder. But, on
the other hand, I think that Delphi
developers are entitled to award
themselves a certain self-satisfied
smirk when they see dyed-in-the-
wool Microsoft developers excit-
edly rushing around saying how
wonderful it is that component
details no longer need to be stored
in the registry, metadata is stored
with the executable, etc, etc. Been
there, done that, got the T-shirt...

One of the few irritating aspects
of Delphi’s property programming
model is the way in which the
Object Inspector refuses to display
read-only properties. You can
make a property read-only simply
by omitting the write clause from
the property declaration, so:

property Version: Integer
read fVersion;

A version number is, of course, an
excellent candidate for a read-only

property, and it’s perfectly reason-
able to want to display a compo-
nent’s version number, status,
vendor details, etc, at design-time.
However, if the Object Inspector
sees that a property’s SetProc field
is set to zero (see RTTI, Under The
Hood), then it will stubbornly
refuse to play ball.

Fortunately, it’s easy to get
around this, and here’s how:

property Version: Integer
read fVersion
write fDummyInteger;

Since the Object Inspector wants
to see a write clause, we’ll supply
one! Simply point the write clause
at a private ‘dummy’ field of the
appropriate type, and that’s it.
Whenever an attempt is made to
write to this property, all that hap-
pens is that the value of the
dummy field gets changed. If you
want to implement several read-
only properties all of the same
type (eg three read-only integer
properties) you can reduce
memory requirements by pointing
the write clause of all three
properties at the same dummy
field. If you want to implement one
or more read-only String proper-
ties, for example, then you’ll need
to add a dummy String field, and
so on.

The Object Inspector isn’t just
picky about read-only properties.
It’s picky period. In addition to the
aforementioned fix for read-only
properties, the Object Inspector
also refuses to display array prop-
erties. If you look at this month’s
Beating The System column, you
will see that I have implemented
a Delphi component, TDesktop-
Manager, which allows an applica-
tion to programmatically manipu-
late the Windows desktop. There
are four published properties in
this component, and three array
properties that are not published,
but merely public. There are two
reasons why the array properties
aren’t published. Primarily (as
mentioned in the article), I wanted
to distinguish these properties
from the others because they
aren’t accessible unless the Active
property is first set. However, even

May 2001 The Delphi Magazine 65

if the three array properties were
published, they still wouldn’t show
up in the Object Inspector. The
format of the RTTI information
generated by the Delphi compiler
is adequate for simple types, but
it’s not adequate to describe more
complex types such as array prop-
erties. Aside from user interface
issues, this is the biggest reason
why array properties aren’t sup-
ported by the Object Inspector. If
you implement a class that pub-
lishes properties which the com-
piler doesn’t regard as being
‘Object Inspector compatible’ then
it silently demotes those property
declarations to public. In other
words, no RTTI is generated.

Default Properties
Having told you that Object Inspec-
tor doesn’t support array proper-
ties, there is one rather neat
feature of Object Pascal that
relates to array properties. Last
month, I mentioned the default
keyword, and described how it can
be used to specify the default value
of a property. This same keyword
can also be used in a somewhat dif-
ferent context to indicate that a
specific array property is to be
treated as the default property of
the class.

Let’s look at an example to make
this clearer. Once again, I’ll refer to
the TDesktopManager component in

➤ Figure 1: Property
persistence, though
totally transparent
most of the time,
is crucial to the
operation of
Delphi. A .DFM-
sniffing tool such
as Merlin (as is
shown here)
illustrates how the
non-default state
of numerous
properties is stored
in the .DFM stream.

this month’s Beating the System.
Here you’ll find a property
declaration that looks like this:

property Caption[
Index: Integer]: String
read GetCaption
write SetCaption;

Suppose I decided that Captionwas
the most important property of
this class, and that 99% of the time,
this is the property that other
developers would wish to access. If
this were the case, then it would
make sense to make Caption the
default property of the class:

property Caption[
Index: Integer]: String
read GetCaption
write SetCaption;
default;

You might think that the compiler
would confuse this with the
‘default value’ usage of the same
keyword. However, there are at
least three reasons why this can’t
happen! From a syntactic point of
view, the ‘default property’ usage
of the keyword follows the prop-
erty declaration proper; that is,
after a semicolon, as I have shown
above. More importantly, only an
array property can be specified
as being the default property,
and only non-array properties can

be given a default
value, so you will see
that the argument
against syntactic ambi-
guity is actually pretty
watertight!

OK, but what does it do? Without
the default clause, we would have
to refer to Caption like this:

MyString :=
Desktop.Caption[Idx];

Desktop.Caption[Idx] :=
MyString;

If Caption is the default property,
we can simplify these assignments
to:

MyString := Desktop[Idx];
Desktop[Idx] := MyString;

In other words, the compiler spots
the square brackets, realises that
an array operation is being used,
and automatically assumes the
default property, Caption. Default
properties are used by Borland to
great effect in the TList and
TStringList classes: you will
realise this now, even if you didn’t
before!

Another big issue is property
storage, also known as persis-
tence. The Delphi development
system is so successful at imple-
menting property persistence that
novice developers are hardly
aware that it’s happening, the
process is completely transparent
to the average programmer. Con-
sider a simple design-time form:
when you change the colour or
position of the form and then close
the project, you’d naturally expect
that, next time you open the pro-
ject, the form has the colour and
position that it had when you
saved it!

The properties of a form are, of
course stored in the associated
.DFM file. Any components that
reside on the form will also have
their properties stored in the same
file, and this can extend to several
levels where container compo-
nents such as group boxes, panels
and toolbars are concerned.
Because Delphi must work trans-
parently with third-party compo-
nents, there must be some
mechanism for establishing which
properties get streamed out to the
.DFM file when the state of a
component is ‘persisted’. This is
where the stored keyword comes
into play.

66 The Delphi Magazine Issue 69

Note that I’m focusing on .DFM
files and design-time issues here,
but the same argument obviously
applies to a compiled executable.
At runtime, the .DFM file is
replaced by a FORM resource which
is contained within the program’s
EXE file:

property ItemCount: Integer
read GetItemCount
write fDummyInteger
stored False;

The property declaration above is
taken, once again, from this
month’s Beating The System. In this
case, ItemCount is a property which
returns the total number of items
on the Windows desktop. This
value is obviously dynamic, in
other words, it depends on which
PC we’re running the program on,
and it may change from one minute
to the next as the user adds and
removes desktop items. It’s a value
which can only be determined
on-the-fly, and it therefore makes
absolutely no sense to make this
property persistent. For this
reason, the property declaration
includes a stored clause which
tells the compiler to generate RTTI
specifying that ItemCount
shouldn’t be stored.

A note for the anoraks: referring
to the RTTI, Under The Hood

RTTI, Under The Hood
For those who like to delve a little deeper, here’s a simple example of how
RTTI is implemented. Let’s suppose you define a boolean property like this:

property Enabled: Boolean
read fEnabled write SetEnabled default True;

Assuming that this declaration appears in the published part of a class, the
compiler will obligingly spit out a chunk of RTTI which looks as below. This
example is taken from a real-live Delphi component, but obviously the
address shown (left-hand column) is arbitrary. Where an object has more than
one published property, an array of these data structures effectively exists in
memory:

00406F5C dd offset Boolean ; PropType
00406F60 dd 0FF000018h ; GetProc
00406F64 dd offset SetEnabled ; SetProc
00406F68 dd 1 ; StoredProc
00406F6C dd 80000000h ; Index
00406F70 dd 1 ; Default
00406F74 dw 0 ; NameIndex
00406F76 db 7,’Enabled’ ; Name

The first 32-bit quantity is a pointer to the type of the property. In this case, it
points at the boolean type which is defined inside SYSTEM.PAS. Most crucially,
a property’s RTTI also contains a couple of 32-bit values which specify how to
read or write the property. They are shown as GetProc and SetProc in the
above RTTI description. For a simple field, these values are conceptually point-
ers to a specific byte offset within the class structure; this byte offset is the
location of the field. Where a getter or setter routine has been declared,
these values point directly to the routine itself.

The GetProc value shown here is $FF000018; in this particular case, we can
interpret it as a reference to the byte at location $18 within any object
instance of this class. In other words, it corresponds to the fEnabled field as
shown in the property declaration. The SetProc value, however, is a straight
32-bit pointer that refers directly to the SetEnabledmethod that’s used to set
the value of the property.

This is actually a very sneaky design since the most significant byte of the
GetProc/SetProc fields acts as a sort of ‘escape code’. If this byte contains the
value $FF, then the remaining 24 bits are interpreted as a byte offset to the
field we’re interested in, relative to the start of the object instance. Inci-
dentally, this imposes an absolute limit on the instance size of a Delphi object
of 224 or 16Mb. This isn’t likely to be a significant limitation most of the time!

The astute reader will no doubt be thinking, what about virtual methods?
It’s perfectly possible to have a property which uses a getter or setter routine
that is itself a virtual method. The advantage of this is that a derived class can
implement a new, overridden getter/setter method, and thus easily override
the internal implementation of the property. How is this encoded in the
above scheme? The answer is that, here again, the ‘escape code’ is used. As
we’ve seen $FF indicates a byte offset from the start of the class instance, ie a
simple field. In a similar way, $FE is used to indicate an offset that’s relative to
the object’s VMT or virtual method table. In other words, the remaining
24-bits indicate which ‘slot’ in the VMT refers to the virtual getter/setter. If the
most significant byte is neither $FF nor $FE, then it’s assumed to be a straight
pointer to a non-virtual method. Under Win32, it’s impossible to have a valid
process address which has a high byte of $FF or $FE, and consequently no
ambiguity can arise.

For more information on all this, take a look at TYPINFO.PASwhich includes
the definition of TPropInfo, corresponding to the data structure shown
above. Do bear in mind though, that TPropInfo is an inherently variable sized
record because of the Pascal-style string that holds the property name. While
you’re at it, try and find a copy of Danny Thorpe’s excellent Delphi Compo-
nent Design published by Addison-Wesley. Sadly, this book is no longer in
print, and it does need updating for more recent versions of Delphi, but it’s
still a great reference for those who like to get into the nitty-gritty.

➤ Figure 2: If you see this in
a car boot sale, then buy it.
Danny Thorpe's excellent
treatise on component design
is a real Delphi classic, sadly
now out of print.

May 2001 The Delphi Magazine 67

boxout, you’ll see that, by default,
the compiler sets the StoredProc
field of a property’s RTTI to 1, indi-
cating that the property should be
persisted. If you specify ‘stored
False’ as part of the property decla-
ration, then this field will be set to
zero. Any other value is taken as a
pointer to a boolean method which
returns True or False according to
whether or not the property
should be stored.

In the same way, my desktop
manager component has two other
properties which are not stored
because they are dynamic quanti-
ties. Judicious use of the stored
directive can minimise the size of
.DFM files by eliminating the stor-
age of otherwise redundant infor-
mation. You’ll notice that the array
properties in TDesktopManager
don’t have stored False as part of
their declaration. The reason is
that Delphi doesn’t persist array
properties anyway, and therefore
we don’t need to tell the compiler
not to do so!

.NET: The View
From The Other Side
I’d originally planned to spend
some time talking about property
editors, the new (and in my view,
poorly designed) Delphi 5 support
for property categories, and so on.
However, this is a pretty big sub-
ject in its own right and perhaps
we’ll return to this in a future arti-
cle, if the Editor can be prevailed
upon.

In the remainder of this article, I
thought you’d be interested in
seeing a quick description of how
properties are implemented from
the perspective of a .NET program-
mer using the C# language, and
how this compares with the Delphi

approach. Here’s the declaration
for the Position property of the
TStream class, taken from
CLASSES.PAS:

property Position: Longint
read GetPosition
write SetPosition;

Expressed in C#, the equivalent
property declaration would look
like Listing 1.

You’ll probably appreciate that
the get and set clauses correspond
directly to the read and write
clauses in a Delphi property decla-
ration. Omit either one, and you’ll
end up with a read-only or write-
only property. You’ll also see that
the ‘getter’ and ‘setter’ methods
essentially disappear and are
replaced with inline code that
appears as part of the property
declaration.

Well, you might think
that, but you’d be
wrong! It’s interesting to
note that the C# com-
piler actually generates
a pair of hidden, private,
methods, get_Position,
and set_Position, and
these contain the (sup-
posedly) inline code

shown above. These methods are
automatically called whenever the
property is referenced. Even in the
degenerate case where a public
property simply reads and writes
the value of a private field, the
compiler still generates these pri-
vate access methods. Personally, I
like the way in which the getter/
setter code appears as part of the
property declaration: I think this is
neater than the Delphi approach
where the access code for a
property can be located some dis-
tance away from the property
declaration.

Where C# really shines is in the
use of attributes which make it
easy to control the design-time
behaviour of your component. For
example, consider the Listing 2
snippet taken from the .NET
documentation.

In this case, three attributes
(always introduced by square
brackets) have been applied to the
property ActiveImage. The first
attribute, DefaultValue, tells the
system that the default value of
this property is null. In terms of
property persistence, it obviously
has a similar role to the stored key-
word that I mentioned earlier.
More interesting is the Description
attribute; users of Visual Basic, for
example, will know that as you

public int Position
{
get { return Seek(0, StreamOrigin.soFromCurrent); }
set { Seek(value, StreamOrigin.soFromBeginning); }

➤ Above: Listing 1 ➤ Below: Listing 2

➤ Figure 3: .NET
provides a number
of standard
attributes which
make properties
easier to use and
simplify the life of
the component
developer. Let's
hope all this stuff
is surfaced in
Delphi.NET!

[DefaultValue(null)]
[Description("The image associated with the control")]
[Category("Appearance")]
public Image ActiveImage {
get {...}
set {...}

}

68 The Delphi Magazine Issue 69

select different items in VB’s Prop-
erty Inspector, a small hint area at
the bottom of the window provides
a brief description of the property.
This, of course, is exactly what the
Description attribute is used for:
it adds the supplied descriptive
string to the metadata associated
with the component such that the
description string is displayed
when the property is active.
Finally, the Category attribute
ensures that this property is added
to the Appearance category of prop-
erties. You don’t need me to tell

you that this is much quicker,
neater and cleaner than the clunky
property categorisation support
which Borland added to Delphi 5.
And all the more so when you real-
ise that .NET’s attribute mecha-
nism is extensible, you can create
your own custom attributes to
handle such diverse issues as
licensing, custom property editors
and a whole lot more.

No, I’m not telling you this to
depress you, quite the opposite.
.NET is an exciting new develop-
ment environment which offers

unprecedented opportunities for
component developers. My fer-
vent hope is that the forthcoming
implementation of Delphi.NET (or
whatever it might be called) will
fully exploit all these high-end fea-
tures such as the aforementioned
attribute mechanism. Exciting
times lie ahead for your favourite
programming language!

Dave Jewell is the Technical Editor
of The Delphi Magazine. Contact
Dave as TechEditor@itecuk.com

	Properties Meet The Object Inspector
	Default Properties
	RTTI, Under The Hood
	.NET: The View From The Other Side

